Archiwa tagu: aktywny system obrony czołgu

Polski system ostrzegawczy przed radarami pola walki dla wozów bojowych

Nowoczesne wozy bojowe, spełniające wymogi współczesnego pola walki, powinny, oprócz skutecznego opancerzenia, posiadać wielosensorowe i wielospektralne systemy ochrony – zarówno biernej (systemy ostrzegawcze, środki zakłócające kanały obserwacji i celowania, systemy zapobiegające pożarowi), jak i aktywnej (systemy niszczące wystrzelone w kierunku pojazdu efektory lub powodujące ich nieskuteczność). Większość pojazdów bojowych w SZ RP posiada układy ochrony biernej, w tym systemy ostrzegania o opromieniowaniu serii Obra wraz z wyrzutniami granatów dyspersyjnych. Jednak jednym z nowych wymogów stawianych układom ostrzegania wozów bojowych, w szczególności tych działających skrycie, np. rozpoznawczych, jest skuteczne wykrywanie radarów pola walki, tzw. trudno-wykrywalnych (Low Probability of Intercept), stosowanych przez pododdziały naziemne przeciwnika, zarówno w obszarze styczności wojsk, jak i na zapleczu – w ochronie baz, stanowisk dowodzenia, ważnych obiektów. Starsza generacja radarów pola walki, stosowała lampy mikrofalowe jako źródła sygnałów nadawanych, o mocy w czasie impulsu od kilkuset do tysiąca watów. Nowe typy radarów z nadajnikami półprzewodnikowymi ze wzmacniaczami mikrofalowymi mają moce szczytowych rzędu kilku watów, tj. kilka rzędów wielkości mniejsze.

Podstawowym problemem w wykrywaniu promieniowania nowoczesnych radarów pola walki jest fakt, że urządzenia te emitują sygnały o bardzo niskim poziomie mocy, co powoduje że klasyczne ostrzegacze radiolokacyjne pracujące w bardzo szerokim paśmie, wykrywają takie sygnały w bardzo małych odległościach, rzędu kilkuset metrów. Natomiast, dla skutecznego przeciwdziałania niezbędne jest uzyskanie zasięgu wykrywania emisji stacji radiolokacyjnych pola walki z odległości co najmniej kilku kilometrów. Emisja sygnału przez radary pola walki następuje najczęściej w dwóch pasmach częstotliwości: X (NATO I), w przedziale 9-11 GHz, albo Ku (NATO J), w przedziale 15-18 GHz. Stosowane są różne typy modulacji sygnału, w tym modulacja impulsowa lub FMCW.

System ostrzegania o opromieniowaniu - PIT - radar pola walki

Demonstrator ostrzegacza radiolokacyjnego – bez osłony anten.

W Przemysłowym Instytucie Telekomunikacji (obecnie PIT-Radwar S.A.) w ramach pracy badawczo-rozwojowej ” ” w latach ? opracowano demonstrator ostrzegacza radiolokacyjnego SO4-0818. Podstawowym wymogiem była zdolność urządzenia do możliwie jak najwcześniejszego wykrywania sygnału fali ciągłej, o mocy rzędu pojedynczych watów, emitowanego przez radiolokator półprzewodnikowy nowej generacji.

Nowe urządzenie było zmodyfikowanym ostrzegaczem pracującym w szerokim paśmie, który mógł wykryć taki sygnał w bardzo małych odległościach (pojedyncze setki metrów). W SO4-0818 zastosowano stały układ anten sektorowych pokrywających przestrzeń dookólnie w azymucie wraz z systemem elektronicznego przełączania odbiornika przestrajanego w częstotliwości. Zakres pasm częstotliwości pracy wynosił 8-18 GHz. Pokrycie w azymucie obejmowało 360 stopni, w elewacji – 90 stopni. Wykryty sygnał był wzmacniany i stanowił podstawę do określenia jednego z czterech sektorów opromieniowania. Detekcja sygnału radaru pola walki była sygnalizowana na wyświetlaczu WD4S-0818, a ostrzegacz informował o wykryciu promieniowania w jednym z sektorów w azymucie i przekazywał sygnał alarmowy operatorowi poprzez interfejs systemu łączności FONET. Ze względu na ograniczenia dotyczące objętości aparatury i ceny urządzenia demonstrator ostrzegacza radiolokacyjnego miał tylko jeden odbiornik szybko przestrajany, przełączany okresowo między antenami zapewniając szybkie przeszukiwanie dookólne.

Wóz dowodzenia HMMWV

Sygnalizator SO4–0818M zamontowany dachu kontenera wozu dowodzenia.

Sygnalizator opromieniowania radiolokacyjnego SO4–0818M składał się z głowicy antenowo–odbiorczej GAO–0818M, sektorowego wskaźnika opromieniowania WD4S–0818M i linii kablowej łączącej GAO–0818M i WD4S–0818M. Głowica antenowa–odbiorcza instalowana jest na dachu kontenera wozu dowodzenia, natomiast wskaźnik opromieniowania montowany jest we wnętrzu.

Sygnalizator opromieniowania radiolokacyjnego SO4–0818M składał się z głowicy antenowo–odbiorczej GAO–0818M, sektorowego wskaźnika opromieniowania WD4S–0818M i linii kablowej łączącej GAO–0818M i WD4S–0818M. Głowica antenowa–odbiorcza instalowana jest na dachu kontenera wozu dowodzenia, natomiast wskaźnik opromieniowania montowany jest we wnętrzu. Konstrukcja mechaniczna głowicy umożliwiała jej łatwy demontaż z dachu pojazdu. Głowica miała średnicę 250 mm i wysokość 300 mm, a wyświetlacz długość 230 mm, szerokość 100 mm i wysokość 100 mm.  Ostrzegacz był zasilany prądem o napięciu 24 V przy poborze nie mniejszym niż 1Ah. Z uwagi na bliskość aktywnych urządzeń radiokomunikacyjnych wozu dowodzenia, mogących zakłócać pracę ostrzegacza i powodować fałszywe alarmy, głowica antenowo-odbiorcza wyposażona została w filtry pracujące w paśmie 8-18 GHz zapewniające wymaganą selektywność systemu.

Copyright © Redakcja Militarium/Fot. PIT-Radwar; Wojskowe Zakłady Łączności nr 1

Polski Zintegrowany Automatyczny System Obrony Pojazdu – koncepcja aktywnej obrony wozów bojowych

Wobec nowych wyzwań w zakresie taktyki walki i stosowanego uzbrojenia przeciwpancernego, do istotnych przesłanek przemawiających za wprowadzaniem systemów obrony aktywnej pojazdów należy zaliczyć: po pierwsze szybki rozwój środków przeciwpancernych i próba osiągnięcia przewagi przebijalności pocisku przeciwpancernego w relacji do wytrzymałości pancerza, szczególnie w przypadku lżejszych wozów, po drugie niecelowość dalszego rozwoju klasycznych pancerzy drogą zwiększania grubości i masy osłony, co zmniejsza manewrowość wozu bojowego, po trzecie konieczność prowadzenia działań w terenie zurbanizowanym, co wymaga zapewnienia praktycznie tego samego poziomu osłony dla całego pojazdu, przy wielokierunkowości możliwych ataków, w tym z boków, z tyłu, z górnej półsfery, w ostatnich latach zintensyfikowano prace nad systemami obrony pojazdu, niszczącymi zagrożenia zanim dotrą one do pancerza. Mają one działać niezależnie od sposobu naprowadzania pocisków na ochraniany obiekt. Co istotne, współczesny stan zaawansowania konstrukcji systemów ochrony aktywnej pozwala na stopniowanie poziomu ochrony, poprzez wprowadzanie modułowych rozwiązań dedykowanych do zwalczania określonych pocisków, bez konieczności ingerencji w konstrukcję pojazdu.

Ewolucja aktywnych systemów obrony pojazdu

Pierwsze funkcjonujące aktywne systemy obrony (ASO) pojazdów znane są od lat siedemdziesiątych ub. wieku, jednak zasadniczym mankamentem tych osłon były wysokie ryzyko porażenia produktami wybuchu efektorów siły żywej pododdziałów wspierających działania wozów bojowych, jak również duża awaryjność i ryzyko fałszywego alarmu. W działaniach obronnych i walce w terenie zurbanizowanym, wymogi te są uwzględniane poprzez organizowanie aktywnej osłony sektorowej i tym samym ograniczenie efektów ubocznych procesu niszczenia celu.

Trophy Merkava Mk 4

Jeden z najbardziej zaawansowanych współczesnych aktywnych systemów obrony – Rafael Trophy na wieży czołgu Merkawa Mk 4.

Obecny podział systemów obrony aktywnej na systemy obezwładniające i zakłócające układy naprowadzania przeciwpancernych pocisków kierowanych, w postaci zadymiania, maskowania, pułapek zakłócających, zakłóceń elektronicznych, co skutkuje przerwaniem naprowadzania lub zmianą toru lotu pocisku oraz na systemy zwalczające obiekt atakujący, czyli wystrzeliwanie w jego stronę antypocisków, co skutkuje fizycznym zniszeniem lub osłabieniem siły destrukcyjnej, albo zmianą toru lotu zanika. Następuje to z powodu łączenia obu typów urządzeń w jeden zintegrowany system. Ponadto, możliwość integracji wszystkich elementów zwiększających poziom ochrony i pozwalających na przetrwanie wozu bojowego oraz jego załogi na polu walki, takich jak systemy obrony aktywnej i pasywnej, układy rozpoznawcze, zdalnie sterowane stanowiska strzeleckie, powoduje, że rozwój ASO będzie ewoluował w kierunku stworzenia systemów wielosensorowych i wieloefektorowych.

Uogólniając, typowy system osłony aktywnej składał się do niedawna z: zespołu czujników (sensorów) służących do wykrycia celów i określenia trajektorii ich lotu, elementów rażących (antypocisków), przelicznika (systemu kierowania ogniem) określającego moment odpalenia antypocisków, interfejsu „człowiek-maszyna” (pozwalającego m.in. na zmianę trybu pracy, programowanie obszarów bezpieczeństwa). W większości rozwiązań występuje modułowość lub wielowariantowość konstrukcji, co pozwala na dostosowanie poziomu ochrony do konfiguracji wozu bojowego. Stosowane układy wykrywania i śledzenia pocisków przeciwpancernych, należy podzielić na radiolokacyjne i optoelektroniczne. Te pierwsze stosowane są jako podstawowe, z uwagi na konieczność posiadania bieżącej informacji o odległości pomiędzy pociskiem, a ochranianym wozem, chociaż ich promieniowanie zdradza pozycję pojazdu i mogą być aktywnie zagłuszane. Przewaga radaru uwidacznia się w poziomie prawdopodobieństwa wykrycia celu, poziomie fałszywych alarmów i możliwości pracy w każdych warunkach atmosferycznych. Układy optoelektroniczne pasywnego wykrywania posiadają obecnie jeszcze funkcję uzupełniającą. System obrony aktywnej musi posiadać także możliwość identyfikacji wykrytych obiektów, ich klasyfikacji i oceny zagrożenia, np. braku reakcji w przypadku niekolizyjnego toru lotu pocisku lub  w sytuacji wystrzelenia w stronę pojazdu amunicji małokalibrowej. System powinien być przygotowany do zwalczania pocisków poruszających się z prędkościami od około 70 m/s do około 1500 m/s. Wymaga to bardzo krótkich czasów reakcji – rzędu milisekund – od rozpoczęcia śledzenia celu do zadziałania efektorów. W układzie zabezpieczenia i uzbrajania ładunków wybuchowych antypocisków stosowane są ultraszybkie pirotechniczne elementy inicjujące. Obecnie zasadniczym podziałem stosowanych w ASO antypocisków jest wyróżnienie efektorów zwalczających cel produktami wybuchu i odłamkami powstałymi z odpowiednio ukształtowanej głowicy bojowej i efektorów rażących obiekt falą uderzeniową wybuchu.

Koncepcja polskiego systemu obrony aktywnej pojazdów pancernych

W Polsce w latach 1999-2006 prowadzono w Wojskowym Instytucie Technicznym Uzbrojenia prace koncepcyjne nad ASO. W 2007 r. zaprezentowano z kolei koncepcję systemu Szerszeń, projektowanego we współpracy z ukraińską firmą Microtek, na bazie ASO Zasłon.

ZASOP 4

Koncepcja montażu cylindrycznych efektorów systemu Zasłon na transporterze opancerzonym Rosomak (u góry) i wozie bojowym Anders (u dołu).

Kolejny raz projektowanie polskiego ASO rozpoczęto w 2011 r. Próby elementów systemu przeprowadzono w ramach dwóch projektów rozwojowych. Pierwszy z nich, o nr O R00 082 12 „Sytem obrony aktywnej obiektów mobilnych przed pociskami z głowicami kumulacyjnymi”, konsorcjum w składzie: Wojskowa Akademia Techniczna oraz AMZ Kutno sp. z o.o. oraz drugi, o nr DOBR-BIO4/031/13249/2013 „Inteligentny antypocisk do zwalczania pocisków przeciwpancernych”, konsorcjum w składzie: Wojskowa Akademia Techniczna we współpracy z Wojskowym Instytutem Techniki Uzbrojenia oraz ZM Dezamet S.A. Oba zadania finansowane przez Narodowe Centrum Badań i Rozwoju w ramach środków na naukę oraz z funduszy własnych na badania Wojskowej Akademii Technicznej.

ZASOP 6

Radar szumowy (z lewej) i głowica optoelektroniczna (z prawej) opracowane dla polskiego aktywnego systemu obrony.

W ramach prac zrealizowano optoelektroniczną i radarową głowice detekcyjne, moduł decyzyjny oraz dwa rodzaje destruktorów. Głowica radarowa powstała na bazie radaru szumowego opracowanego również w WAT. Przeprowadzono także próby niszczenia pocisków granatnikowych PG-7, stosowanych w granatnikach przeciwpancernych RPG-7, przez wystrzeliwane z wyrzutni lufowej ładunki odłamkowe oraz kasetowe ładunki rażące podmuchem eksplozji.

ZASOP 7

Sekwencja zwalczania pocisku PG-7 za pomocą granatu odłamkowego (1a-1b) i za pomocą ładunku rażącego podmuchem eksplozji (2a-2b).

Do 2014 r. wszystkie powyższe elementy rozwiązania ZASOP zostały zintegrowane i przebadane oraz zmodyfikowane z uwzględnieniem doświadczeń poligonowych. Podczas badań osiągnięto skuteczność systemu na poziomie ponad 80% w stosunku do pocisków z granatników przeciwpancernych.

ZASOP 2

Efekt trafienia opracowanego w Polsce antypocisku odłamkowego w wystrzeloną w kierunku systemu głowicę granatu PG-7.

W ramach zadań opracowano również koncepcję Zintegrowanego Automatycznego Systemu Ochrony Pojazdu (ZASOP). Zintegrowany oznacza, że system miałby łączyć wszystkie sensory (detektory) i efektory obronne pojazdu w jeden system posiadający prosty i czytelny interfejs operatora, podający syntetyczną informację o zagrożeniu pojazdu i efektach przeciwdziałania (w przypadku działania automatycznego). Automatyczny oznacza, że system ma działać, co do zasady automatycznie, z możliwością zmiany trybu działania na półautomatyczny, np. w przypadku użycia pojazdu w konfliktach o małej lub średniej intensywności. ZASOP ma być systemem, tj. łączyć wszystkie elementy użytkowane dotychczas samodzielnie, takie jak np. sensory wykrywające zagrożenie, wyrzutnie granatów dymnych, czy odłamkowych. Ochrona pojazdu ma być rozumiana szeroko, jako ochrona strefowa – począwszy od dozoru dookólnego i zwalczania wyrzutni pocisków przeciwpancernych, poprzez zakłócenie procesu namierzania, ewentualnie kierowania pociskiem, do ich niszczenia w strefie dalszej i bliższej pojazdu, a także ochronę załogi we wnętrzu wozu w przypadku trafienia.

ZASOP 1

Model funkcjonalny ZASOP z 2014 r.

W celu zapewnienia jak największej skuteczności systemu obrony aktywnej miałby on posiadać – zarówno w zakresie wykrywania zagrożenia, jak i jego neutralizacji – układ podwójny. Moduł detekcji składałby się z sensora radarowego (na bazie radaru szumowego) pracującego w paśmie milimetrowym (trójwspółrzędny radar mikrofalowy) oraz głowicy optoelektronicznej. Radar miałby zasięg wykrycia około 70 m i śledzenia około 30 m od pojazdu i wiązki o szerokości 20 stopni. Z kolei głowica optoelektroniczna składa się z 10 elementów detekcyjnych pracujących w paśmie podczerwieni, tak aby pokryć pełny obszar w azymucie. Sygnały z optoelektronicznej głowicy detekcyjnej i radaru byłby poddawane fuzji i obróbce w celu identyfikacji wykrytych obiektów, ich klasyfikacji i oceny zagrożenia dla pojazdu oraz wypracowania sekwencji przeciwdziałania. Moduł destruktorów składałby się z wyrzutni lufowej z ładunkami odłamkowymi do neutralizacji pocisków w strefie dalszej (w odległości około 30 m od ochranianego pojazdu) oraz głowic wybuchowych do niszczenia atakujących efektorów w strefie bliskiej (w odległości kilku metrów od pojazdu). Ładunki odłamkowe mają niszczyć cel prefragmentowanymi elementami rażącymi, natomiast głowica odłamkowa prostopadłościenny ładunek niszczący cel lub wytrącający z toru lotu podmuchem eksplozji.

ZASOP 5

Schemat konstrukcji liniowych ładunków kumulacyjnych przeznaczonych do zwalczania pocisków przeciwpancernych.

Po zakończeniu integracji w pełni funkcjonalny ZASOP składałby się z centralnej jednostki decyzyjnej, pulpitu sterowania systemem, zintegrowanego zespołu sensorów (radar, głowica optoelektroniczna, układ ostrzegania przed opromieniowaniem laserowym i radiolokacyjnym, akustyczny detektor strzału, detektor skażeń, układ detekcji przeciwpożarowej) oraz zespołu efektorów (ładunki odłamkowe dalszego rażenia, kierunkowe kasety odłamkowe bliskiego rażenia, granaty wielospektralne, zdalnie sterowany moduł uzbrojenia).

ZASOP 3

Koncepcja połączenia elementów obrony pojazdu w jeden system – Zintegrowany Automatyczny System Ochrony Pojazdu (ZASOP).

Opracowano również, pod względem teoretycznym, metodę niszczenia wszystkich typów zagrożeń, w postaci kasety w liniowymi ładunkami kumulacyjnymi. Ładunki są umieszczone w obudowie pod różnym kątem w stosunku do czoła kasety. Ponadto w dalszej przyszłości planowane jest opracowanie inteligentnego antypocisku do zwalczania pocisków przeciwpancernych (IAZPP), wyposażonego w kierunkową głowicę odłamkową do niszczenia szybkich środków przeciwpancernych.

W oparciu o wnioski ze wspomnianych badań w 2014 r. powstało konsorcjum, w składzie: Wojskowa Akademia Techniczna, Wojskowy Instytut Techniczny Uzbrojenia, Polski Holding Obronny sp. z o.o., PCO S.A. oraz Mesko S.A. Konsorcjum ma być odpowiedzialne za opracowanie poszczególnych komponentów systemu. Opracowanie autonomicznego układu z efektorami w postaci wystrzeliwanych ładunków odłamkowych i kierunkowych ładunków odłamkujących ma trwać trzy lata, układu z możliwością zwalczania armatnich pociskom podkalibrowym i odłamkowo-burzącym – trzy lata, po ich integracji mozliwe będzie wdrożenie w pełni funkcjonalnego ZASOP.

Copyright © Redakcja Militarium/Rys. Wojskowa Akademia Techniczna; Militarium/Fot. Rafael, Wojskowa Akademia Techniczna; Militarium