Archiwum kategorii: Polskie projekty

Polski radar śledzący RSKu dla zestawów przeciwlotniczych bardzo krótkiego zasięgu

Nowoczesne radiolokatory śledzące dla artyleryjskich i rakietowo-artyleryjskich zestawów przeciwlotniczych nie były do tej pory produkowane w Polsce. W opracowanym w latach dziewięćdziesiątych samobieżnym zestawie rakietowo-artyleryjskim Stalagmit-Sopel nie przewidywano radiolokacyjnego kanału śledzenia celów, natomiast skonstruowany w latach 1995-2000 znacznie bardziej zaawansowany przeciwlotniczy zestaw artyleryjski Loara posiadał importowany radar śledzący Ericsson Microwave Systems Eagle.

W związku z programem rozwoju lufowych i rakietowych środków przeciwlotniczych w Polsce, w 2010 r. rozpoczęto w Bumar Elektronika S.A. we współpracy z Politechniką Warszawską projektowanie polskiego radaru śledzącego. Zgodnie z założeniami urządzenie miało mieć relatywnie niski koszt, ale jednocześnie dysponować zadowalającymi parametrami pracy. Możliwości nowego urządzenia miały pozwalać na skokowe zwiększanie dokładności kierowania przeciwlotniczych zestawów artyleryjskich po zastosowaniu rozwiązań zdalnego sterowania i automatyzacji napędów tych systemów.

Zdecydowano się pozostać przy tradycyjnej konstrukcji radiolokatora, dobrze opanowanej w Polsce, tj. zastosować antenę pasywną, nadajnik i cyfrowe przetwarzanie sygnałów. Wprawdzie radary tego typu nie są konstrukcjami najnowocześniejszymi, ale są znacznie tańsze od najbardziej zaawansowanych systemów, przy akceptowalnie niższych możliwościach. Projekt nr 0 R00 0151 12 o nazwie „Opracowanie demonstratora technologii radaru śledzącego do kierowania artylerią przeciwlotniczą”, prowadzony w latach 2010-2013, został sfinansowany przez Narodowe Centrum  Badań i Rozwoju. Wykonawcą zadania było konsorcjum Bumar Elektronika S.A., Instytut Systemów Elektronicznych i Instytut Radioelektroniki Politechniki Warszawskiej. Elementem importowanym jest w urządzeniu moduł nadajnika firmy Thales.

Radar RSKu 1 militarium.net

Antena radaru RSKu na pojeździe badawczym.

W 2012 r. ukończono demonstrator radaru o oznaczeniu roboczym RSKu-231, który przeszedł wstępne próby i po zmianach w konstrukcji przeszedł badania kwalifikacyjne potwierdzające poprawność przyjętych założeń konstrukcyjnych. Wynikiem projektu, zakończonego w 2013 r., jest demonstrator technologii radaru śledzącego, który stanowił podstawę do budowy docelowej wersji urządzenia.

Prototypowy radar RSKu pracuje w paśmie Ku, tj. od 17,0 do 17,5 GHz, co umożliwia uzyskanie odpowiedniej rozdzielczości, przy wymaganym zasięgu. Fazowana antena radaru o konstrukcji łatowej laminatowej posiada 64 wiersze promieniujące w 48 kolumnach. Moduł nadajnika to układ z miniaturową wysokostabilną lampą fali bieżącej i półprzewodnikowymi stopniami poprzedzającymi. Maksymalna moc nadajnika 100 W. Antena składa się funkcjonalnie z ośmiu segmentów odbiorczych – oddzielnych w azymucie (kierunku poziomym) i elewacji (kierunku pionowym) – z których każdy podaje sygnał do indywidualnego kanału odbiorczego.

Radar RSKu 2 militarium.net

Antena radaru RSKu na stanowisku badawczym.

Dzięki temu i przy użyciu cyfrowego przetwarzania sygnału pomiar kątów celu w elewacji odbywa się metodą monoimpulsową z wyeliminowaniem efektu tzw. wielodrogowości przy prowadzeniu celu na bardzo małych kątach w elewacji. Oznacza to, że algorytm przetwarzania oddzielnych sygnałów z segmentów anteny pozwala na jednoznaczne określenie kąta celu śledzonego na bardzo małych kątach elewacji i eliminowanie sygnałów odbitych od powierzchni ziemi lub wody. Zasięg wykrywania celu wynosi w trybie obserwacji do 20 km, a w trybie śledzenia (np. po podaniu wstępnych współrzędnych z radaru obserwacyjnego) do 30 km. Dokładność określenia położenia celu wynosi 0,02 stopnia w azymucie, 0,015 stopnia w elewacji i maksymalnie 2 m w odległości.

RSKu posiada automatyczny system pracy w trzech fazach – z fazy obserwacji, w której wiązka skierowana jest zgrubnie we wskazany sektor przestrzeni, z którego oczekiwane jest zagrożenie (przeszukiwania niewielkiej części przestrzeni w określony z góry sposób), poprzez fazę przechwycenia po znalezieniu celu, radar przechodzi do fazy śledzenia, kiedy wiązka podąża za ruchami celu.

Radar śledzący RSKu może być użyty w artyleryjskiej baterii przeciwlotniczej z armatami kalibru od 23 mm do 35 mm, np. w podsystemie dowodzenia na wozie dowodzenia WO-35. Radar może być zamontowany na głowicy śledzącej WG-35 wspomnianego pojazdu.

Copyright © Redakcja Militarium/Fot. Militarium

Polskie projekty pojazdów specjalistycznych na bazie podwozia ciągnika MT-S

Zaprojektowane pod koniec lat osiemdziesiątych przez Ośrodek Badawczo-Rozwojowy Urządzeń Mechanicznych (OBRUM) specjalne podwozie gąsienicowe SPG-1 (inaczej Szybkobieżny Pojazd Gąsienicowy), było odmianą rozwojową podwozia specjalnego, opracowanego kilka lat wcześniej, wspólnie ze specjalistami z NRD, na bazie przygotowywanego do produkcji licencyjnej w Polsce ciągnika artyleryjskiego MT-S (Obiekt 306). SPG-1 miało posłużyć do budowy zmechanizowanego układacza min, jednak z różnych przyczyn pojazd bazowy nie został wdrożony do produkcji, wykonano jedynie serię próbną ciągników. Podwozie SPG-1 posłużyło jednak do zabudowy aparatury polskiej stacji radiolokacyjnej NUR-21.

Zmodernizowany pojazd, oznaczony SPG-1M, wykorzystywał podzespoły zmodyfikowanego MT-S, ale także licencyjnego czołgu T-72M i w odmianie z sześcioma parami kół jezdnych został ukończony w 1989 r. Bazę podwozia stanowiły elementy czołgu T-72, zabudowane w specjalnym kadłubie przystosowanym do zabudowy określonego systemu, wieży lub wyposażenia, takie jak: silnik z układami smarowania i powietrznym, zespoły przeniesienia napędu (transmisje z przekładniami bocznymi), zawieszenie (wahacze, wałki skrętne, amortyzatory hydrauliczne), układ jezdny (koła nośne, koła napinające, koła napędowe, gąsienice), układy sterowania (biegami, hamulcami i transmisjami), wyposażenie elektryczne i optyczne, zespoły filtrowentylacji i wykrywania skażeń chemicznych, układ przecipożarowy. W zależności od wymaganej długości przestrzeni ładunkowej lub masy wyposażenia podwozie miało odpowiednio modyfikowane wałki skrętne i amortyzatory z czołgu T-72. Od podstaw opracowano i zabudowano natomiast układ wydechowy, eżektorowy układ chłodzenia, układ paliwowy ze zbiornikami, przekładnię pośrednią z wałem napędowym, wolantowy układ sterowania, układ napędowy nadajnika drogi oraz system nawigacji. Kształt górnej części kadłuba podwozia zmieniał się w zależności od przeznaczenia i konstrukcji pojazdu, niezależnie tego nie ulegały zmianie główne układy i zespoły podwozia (silnik napędowy z układem podgrzewania i smarowania, układ przeniesienia mocy). Przestrzenie w kadłubie nad błotnikami przeznaczone były do zabudowy zbiorników paliwa i wyposażenia specjalnego (np. agregatu prądotwórczego, klimatyzatora, ogrzewacza czy wyposażenia hydraulicznego).

SPG-1M

Protoplasta SPG-1M i pochodnych – podwozie SPG-1 jako nośnik stacji radiolokacyjnej NUR-21. W latach 1984-1990 dostarczono polskiemu wojsku 33 sztuki stacji NUR-21.

Kadłub spawany z blach pancernych zapewniających ochronę przed pociskami kalibru 7,62 mm z odległości 200 m oraz odłamkami artyleryjskimi, a z przodu przed pociskami kalibru 12,7 mm z odległości 1000 m. Załoga pojazdu liczyła jedną lub dwie osoby (dowódca, kierowca) i posiadała boczne drzwi w lewej górnej burcie kadłuba oraz włazy górne. Otwór tylny do przedziału transportowego miał być zamykany specjalną pokrywą, drzwiami otwieranymi na prawą stronę podwozia lub rampą podnoszoną hydraulicznie.

Podwozie SPG-1M znalazło zastosowanie w samobieżnym układaczu min (SUM) Kalina i prototypowym bojowym wozie piechoty BWP-2000. W latach 1997-2000 opracowano również – na bazie SPG-1M – uniwersalne podwozie gąsienicowe z siedmioma parami kół nośnych, które jako nośnik wieży AS-90P, czyli licencyjnej AS-52, miało być elementem samobieżnej 155-mm armatohaubicy Krab.

Przewidywano także, w przypadku zgłoszenia zapotrzebowania przez polskie Ministerstwo Obrony Narodowej lub kontrahenta zagranicznego, że gąsienicowe podwozie specjalne w wersji sześciokołowej i siedmiokołowej będzie mogło być zastosowane w pojazdach specjalnych, np. pod zabudowę systemu radarowego, pod zabudowę zestawów rakietowych – przeciwlotniczych i przeciwpancernych, a także pojazdów inżynieryjnych i wozów zabezpieczenia technicznego. W związku z tym, w OBRUM powstało, w latach 1996-1999, kilka projektów podwozi gąsienicowych, bazujących na wspólnych podzespołach, dla których opracowano oferty techniczne i przedłożono zainteresowanym partnerom krajowym i zagranicznym.

Pierwszym ze wspomnianych uniwersalnych pojazdów gąsienicowych było specjalne podwozie BLR-III pod zabudowę systemu radarowego dla odbiorcy zagranicznego.

BWP-2000 BLR-1

Podwozie BLR-III w widoku z boku i z góry.

Koncepcja pojazdu była pochodną współpracy z Indiami – w 1988 r. wyeksportowano tam jeden radar NUR-21, a w 1997 r. – stację NUR-21MI, czyli radar NUR-22 na nośniku gąsienicowym. W związku z tym opracowane podwozie w wersji sześciokołowej przeznaczone było do zabudowy aparatury elektronicznej i zespołu antenowego stacji radiolokacyjnej według konkretnych wymagań. Pojazd posiadał dodatkowo system klimatyzacji i agregat prądotwórczy o mocy 30 kW. Silnik miał mechanizm odbioru mocy do napędu systemów elektrycznych lub zespołu hydraulicznego z pompami. Przestrzeń transportowa wyłożona miała być wykładzinami antyradiacyjnymi. Załoga pojazdu bazowego składała się z dowódcy i kierowcy.

Podwozie BLR-III mogło być przeznaczone również pod zabudowę innych systemów, w tym zestawów walki elektronicznej i radiotechnicznych. Pojazd posiadał przedział roboczy o wymiarach 4000 x 2130 x 1640 mm i objętości 15 metrów sześciennych, a średnica otworu stopowego wynosiła 1320 mm. Podwozie miało być wyposażone w silnik wysokoprężny S-12-K o mocy 522 kW (710 KM), stanowiący rozwój diesla stosowanego w ciągniku MT-S.

BWP-2000 BLR-2

Widok ogólny podwozia BLR-III.

Z kolei podwozie zaprojektowane dla samobieżnej haubicy Krab, miało być również zastosowane jako nośnik rakietowego systemu przeciwlotniczego, samobieżnej wyrzutni pocisków przeciwpancernych, mostu czołgowego typu Leguan, wozu zabezpieczenia technicznego i ewakuacji, wozu remontu uzbrojenia i elektroniki. Pojazd w tej wersji bazował na podwoziu z siedmioma parami kół jezdnych wyposażonym w zmodyfikowany silnik S-12-U o mocy 618 kW (840 KM) z nową przekładnią pośrednią i układem bieżnym wyposażonym w zmodyfikowane gąsienice z nakładkami gumowymi. Załoga pojazdu bazowego składała się z dowódcy i kierowcy. W wersji „wysokiej” przedział roboczy miał wymiary 4150 x 2130 x 1615 mm i objętość 20 metrów sześciennych.

BWP-2000 Kroton 1

Podwozie dla systemu Kroton w widoku z boku i z góry.

Jednym z projektów, wykorzystującym podwozie dla samobieżnej haubicy Krab z siedmioma parami kół nośnych, był Inżynieryjny System Minowania Kroton. System był wyposażony w osiem platform z wyrzutniami min – na każdej platformie znajdowało się 20 wyrzutni kasetowych TMN. Każdy moduł TMN zawierał pięć min narzutowych MN121 lub MN123. Łącznie pojazd miał przewozić do 800 min wspomnianych typów.

BWP-2000 Kroton 2

Widok ogólny podwozia dla systemu Kroton.

Wyposażenie obu typów podwozi obejmowało m.in. reflektory z przysłonami, wyrzutnie pocisków dymnych, system przeciwpożarowy Deugra, przyrząd obserwacyjny dzienny TNPO-168W lub dzienno-nocny PNK-72 Radomka, układ filtrowentylacyjny UWS-200 z systemem wytwarzania nadciśnienia, system do wykrywania skażeń chemicznych ASS-1 Tafios lub GO-27, radiostację UKF RRC-9500 i pojemniki na osprzęt dodatkowy.

BLR-III Kroton
Masa podwozia 32 tony 22 tony
Nośność podwozia 8 ton 10 ton
Długość podwozia 7960 mm 8790 mm
Szerokość z błotnikami 3500 mm 3500 mm
Szerokość bez błotników 3370 mm 3300 mm
Wysokość 2367 mm 2740 mm
Prześwit 450 mm 450 mm
Prędkość maksymalna po drodze utwardzonej 60 km/h 70 km/h
Prędkość maksymalna po drodze gruntowej 35 km/h 35 km/h
Zasięg 500 km 600 km
Wzniesienia 30 stopni 30 stopni
Przechyły boczne 20 stopni 20 stopni
Rowy 2800 mm 2800 mm
Ścianki pionowe 700 mm 800 mm
Brody 1300 mm 1000 mm

Zarówno opracowanie podwozia BLR-III dla systemów specjalistycznych, jak i koncepcja nośnika dla systemu minowania narzutowego pozostały jedynie projektami ofertowymi OBRUM.

Copyright © Redakcja Militarium/Rys. Ośrodek Badawczo-Rozwojowy Urządzeń Mechanicznych

APG – polskie autonomiczne podwozie gąsienicowe z napędem hybrydowym

Prace nad eksperymentalnym spalinowo-elektrycznym hybrydowym systemem napędowym dla ciężkich pojazdów gąsienicowych rozpoczęto w Polsce w 2008 r. Projekt badawczo-rozwojowy nr O R00 0048 05 pod nazwą „”, dofinansowany przez Ministerstwo Nauki i Szkolnictwa Wyższego, był realizowany w latach 2008-2011, przez konsorcjum w składzie Politechnika Śląska, Akademia Górniczo-Hutnicza w Krakowie, Centrum Produkcji Wojskowej Huty Stalowa Wola S.A. i Wasko S.A. Do opracowania demonstratora wybrano podwozie samobieżnej haubicy 2S1, oryginalnie z silnikiem JAMZ–238W oraz mechanicznym układem napędowym, produkowanej na licencji w Hucie Stalowa Wola. Pojazd otrzymał nazwę APG (Autonomiczne Podwozie Gąsienicowe).

Po opracowaniu koncepcji napędu dokonano przebudowy jednego z seryjnych podwozi. Zaplanowano, wykonano i przebadano spalinowo-elektryczny napęd hybrydowy zawierający silnik wysokoprężny oraz silniki elektryczne z magnesami trwałymi. W pojeździe zastosowano także zawieszenie z elementami o zmiennej charakterystyce tłumienia i nowy układ napinania gąsienic. Instalacja elektryczna pojazdu została zintegrowana za pomocą szyny CAN-BUS. Efektem końcowym projektu był demonstrator technologii pojazdu, w którym zintegrowano poszczególne układy i podzespoły, a także modele pojazdów rozwojowych.

Masa APG wynosiła 16 ton, możliwe było zwiększenie dopuszczalnej masy całkowitej pojazdu do 23 ton. Pojazd został wyposażony w wysokoprężny silnik spalinowy o mocy 220 kW (300 KM) z przekładnią elektromechaniczną. Zasilanie zapewniała baterią akumulatorów, a także dodatkowy, wykonany dla badanego pojazdu, agregat prądotwórczy o mocy chwilowej 145 kW (197 KM). Sumaryczna ciągła moc układu napędowego wynosi 310 kW (421 KM), natomiast moc chwilowa – 470 kW (640 KM). Współczynniki mocy jednostkowej wynosiły odpowiednio 19,3 kW/t i 29,3 kW/t. Układ napędowy zapewniał bezstopniową regulację skrętu pojazdu i możliwość jego obrotu w miejscu, za pomocą przeciwbieżnego ruchu gąsienic.

APG Hybrydowy 1

Widok ogólny pojazdu APG.

Pojazd posiadał możliwość sterowania załogowego, a także układy kierowania zdalnego i sterowania autonomicznego. Pojazd mógł być sterowany przez załogę z wnętrza, zdalnie lub autonomicznie – w dwóch ostatnich przypadkach z wykorzystaniem zestawu kamer oraz odbiornika GPS i lidaru. System sterowania pozwalał w autonomicznym trybie bezzałogowym jazdę po zaprogramowanej trasie z możliwością bezprzewodowej interwencji operatora w każdej chwili. Dla potrzeb badanego pojazdu wykonano pulpit zdalnego sterowania, składający się ze stacji roboczej i urządzenia nadawczego.

Układ napędowy i sterowania APG pozwalał na realizację kilku trybów jazdy w zależności od wariantu połączenia podzespołów napędu:

1. Jazda z małą prędkością z użyciem silników elektrycznych – układ szeregowy.

2. Jazda z dużą prędkością z użyciem silnika spalinowego – układ równoległy.

3. Jazda z dużą prędkością z użyciem silnika spalinowego i silnków elektrycznych – układ równoległy.

4. Hamowanie lub zjazd z odzyskiwaniem energii.

5. Praca na postoju jako agregat prądotwórczy.

Chwilowa prędkość maksymalna pojazdu z użyciem równoległego układu napędu spalinowo-elektrycznego wynosiła 75 km/h. Przyspieszenie od 0 km/h do 32 km/h trwało 5 sekund.

APG Hybrydowy 2

APG w czasie dynamicznej jazdy.

Ponadto w Wojskowym Instytucie Technicznym Uzbrojenia opracowano analizę możliwości wykorzystania elektromechanicznego układu napędowego do pojazdu gąsienicowego (analiza dotyczyła podwozia 2S1/MT-LB). Projekt elektromechanicznego układu napędowego dla pojazdu gąsienicowego zakładał m.in., że dynamika napędu pojazdu z elektromechanicznym układem napędowym powinna być co najmniej takie same, jak w pojeździe z dotychczasowym układem napędowym, w pracach zostaną wykorzystane dostępne na rynku elementy napędu elektrycznego, przeznaczone np. do napędu innych pojazdów, np. trolejbusów, tramwajów oraz dostępny silnik spalinowy. Silniki montowane w napędach o regulowanej prędkości obrotowej, powinny cechować się wysoką sprawnością, dużą odpornością na przeciążenia, wysokim momentem obrotowym oraz szerokim zakresem regulacji prędkości obrotowej. Analiza wykazała, że wymagania te spełniają silniki synchroniczne z magnesami trwałymi, zaprojektowane do pracy z dwustrefową regulacją prędkości obrotowej.

Wymagane osiągi trakcyjne podwozia, takie jak np. przyspieszenie do zadanej prędkości, prędkość maksymalna w określonym terenie i warunkach atmosferycznych oraz przy masie pojazdu,  Dlatego punktem wyjścia do doboru silników elektrycznych elektromechanicznego układu napędowego stały się parametry konstrukcyjne zespołów pojazdu gąsienicowego MT-LB, takie jak np. charakterystyka momentu obrotowego w funkcji prędkości obrotowej wału korbowego silnika JAMZ–238W, przełożenia układu napędowego i jego sprawność.

W ramach projektu koncepcyjnego przeanalizowano kilka wariantów elektromechanicznego układ napędowego.

Wariant I Wariant II Wariant III Wariant IV
Dwa napędowe silniki elektryczne (lewy i prawy) podłączone bezpośrednio do kół napędowych pojazdu. Dwa napędowe silniki elektryczne (lewy i prawy) podłączone do istniejących w pojeździe gąsienicowym dwóch przekładni bocznych i układu hamulcowego. Dwa napędowe silniki elektryczne (lewy i prawy) i dwie przekładnie stopniowe za silnikami elektrycznymi podłączone do istniejących w pojeździe gąsienicowym dwóch przekładni bocznych i układu hamulcowego. Jeden napędowy silnik elektryczny, dwa planetarne rzędy sumujące i jeden elektryczny silnik skrętu.

Wariant I charakteryzował się prostotą konstrukcji. Wariant II umożliwiał wykorzystanie silników elektrycznych o mniejszej mocy, ale większej prędkości obrotowej, ale wymagał precyzyjnego sterowania prędkością obrotową wałów napędowych silników elektrycznych przy zmiennych oporach skrętu, w celu zapewnienia wymaganych promieni skrętu. Wariant III pozwalał na wykorzystanie napędowych silników elektrycznych o mniejszej mocy i prędkości obrotowej, jednak wymuszał, podobnie jak w wariancie II, precyzyjne sterowanie prędkością obrotową wałów napędowych silników elektrycznych przy zmiennych oporach skrętu, w celu zapewnienia wymaganych promieni skrętu. Wariant IV wymagał zastosowania dwóch niezależnych silników elektrycznych – silnika elektrycznego napędu powodującego ruch pojazdu i silnika elektrycznego skrętu wraz z planetarnymi rzędami sumującymi pozwalającego na wykonywanie skrętu pojazdu.

Napęd hybrydowy MT-LB 1

Schematy analizowanych wariantów hybrydowego układu napędowego pojazdu gąsienicowego. Rysunek – Wojskowy Instytut Techniki Inżynieryjnej

Po przeanalizowaniu koncepcji pod względem technicznym odrzucono warianty I, II i IV napędu z uwagi na konieczność zastosowania nieprodukowanych seryjnie silników. Według odpowiedzi producentów takie silniki mogłyby być zaprojektowane i wyprodukowane na zamówienie, co było sprzeczne z przyjętym założeniem. Ostatecznie za optymalny uznano, że wariant III. Planowano zastosowanie seryjnych silników HPM150 z systemem chłodzenia zewnętrznego (opcjonalnie układ sterowania DD45-500L silnika elektrycznego HPM150). W tej wersji silniki elektryczne miałyby działać jako jednostki napędowe lub jako generatory (w tym przypadku silnik spalinowy napędza jeden silnik elektryczny – generator, który zasila energią elektryczną drugi silnik elektryczny napędzający pojazd).

Copyright © Redakcja Militarium/Fot. Militarium

Polski czołg podstawowy Goryl-Anders – projekt koncepcyjny

Wstępną koncepcję czołgu podstawowego kolejnej, po pojazdach T-72M1/T-72S, generacji opracowano w Ośrodku Badawczo-Rozwojowym Urządzeń Mechanicznych jeszcze w 1988 r. Po przemianach ustrojowych w 1989 r. uzyskano częściowo możliwość pozyskania komponentów zagranicznych i rozpoczęcia współpracy z przedsiębiorstwami zachodnimi. Zasadnicze prace koncepcyjne nad czołgiem podstawowym, nazwanym nieoficjalnie Goryl, przeprowadzono w 1991 r. Czołg miał posiadać wspólne z innymi pojazdami bojowymi, tj. opracowywanym gąsienicowym bojowym wozem piechoty (propozycja BWP-2000) i przeciwlotniczym zestawem artyleryjskim Loara-A i rakietowym Loara-R, systemy, np. układy ostrzegania o opromieniowaniu laserem i przeciwdziałania w postaci wyrzutni granatów dymnych, podsystemy modułów kierowania ogniem, układy stabilizacji, systemy nawigacji, przeciwpożarowy i przeciwwybuchowy. Te same rozwiązania konstrukcyjne i technologiczne miały być użyte przy wytwarzaniu pancerzy wielowarstwowych, konstrukcji kadłubów i układów napędowych. Punktem wyjścia dla projektu Goryl miała być polska linia rozwojowa czołgu T-72M1, tj. pojazdy PT-91 Twardy, a także czołgi PT-94 i PT-97, w których planowano stopniowo zaimplementować nowe rozwiązania konstrukcyjne w zakresie kadłuba, napędu, uzbrojenia i elektroniki wozu.

W trakcie prac koncepcyjnych rozważano możliwość opracowania kilku wersji nowego czołgu. Dwie podstawowe różniły się przede wszystkim uzbrojeniem – w pierwszym wypadku miała to być armata kalibru 120 mm ze zmechanizowanym systemem ładowania oraz zapasem amunicji w niszy wieży lub armata kalibru 125 mm ze zmechanizowanym układem ładowania w przedziale bojowym, w obu przypadkach umieszczona w konwencjonalnej załogowej wieży.

Czołg Goryl-Anders 1

Czołg Goryl – wizja z 1992 r.

W 1992 r. rozważano rozpoczęcie ponadresortowego projektu zbrojeniowego, tzw. Strategicznego Programu Rządowego, dotyczącego czołgu Goryl, przewidziano w nim udział kilkudziesięciu przedsiębiorstw krajowych i kilkunastu partnerów zagranicznych, którzy wtedy deklarowali współpracę. Nakłady na prace badawczo-rozwojowe, przedsięwzięcia organizacyjno-inwestycyjne i zakupy kooperacyjne związane z programem miały wynieść około 360 milionów USD według cen z pierwszej połowy lat dziewięćdziesiątych. Przewidywano także, że cena jednostkowa seryjnego czołgu będzie wynosić około 4,6 miliona USD, według ówczesnych danych czołg PT-91 Twardy miał kosztować około 2,5 miliona USD.

Planowano, że produkcja seryjna Goryla rozpocznie się po 10 latach od daty podjęcia decyzji o uruchomieniu Strategicznego Programu Rządowego, tzn. po zakończeniu wytwarzania zmodernizowanych wersji czołgu T-72M/PT-91 – przewidywalnie około 2005 r. W 1995 r. zmieniono nazwę koncepcyjnego czołgu z Goryl na Anders, choć w oficjalnej dokumentacji OBRUM nazwa Anders nie figurowała.

Czołg Goryl-Anders 2

Słabej jakości zdjęcie makiety czołgu Goryl-Anders.

Ostatecznie nie doszło do uruchomienia programu rządowego, oficjalnie z uwagi na przewidywane wysokie koszty projektu, znaczną cenę jednostkową oraz ryzyko niepowodzenia projektu. Cena jednostkowa Andersa miała być prawie dwukrotnie wyższa od uznawanego wówczas za spełniającego wymagania czołgu PT-91 Twardy. W 1994 r. rozpoczęto jedynie dwa strategiczne projekty rządowe – pierwszy dotyczący śmigłowca uzbrojonego i drugi w zakresie nowoczesnych systemów przeciwlotniczych. Do projektu polskiego czołgu podstawowego powrócono jeszcze kilka lat później, przy okazji koncepcji pojazdu PT-2001.

Czołg podstawowy Goryl według koncepcji z lat 1991-1995 miał mieć klasyczny układ konstrukcyjny z przedziałem kierowania z przodu, bojowym (mieszczącym kosz wieży) w środku oraz napędowym z tyłu. Wieża z miejscami dowódcy z prawej strony oraz działonowego z lewej. Kadłub spawany z blach pancernych, z przednią płytą wielowarstwową. Pancerz czołowy kadłuba i pancerz wieży wielowarstwowy. Boki i przód kadłuba miały być wzmocnione panelami pancerza pasywnego lub modułami osłony reaktywnej. Układ jezdny miał składać się z sześciu par kół nośnych z zawieszeniem hydropneumatycznym lub na wałkach skrętnych, a dla układu napędowego wybrano dwunastocylindrowy wielopaliwowy silnik wysokoprężny Rolls Royce serii Condor o mocy 1119 kW (1500 KM) z układem przeniesienia napędu Renk ESM500 sterowanym automatycznie.

Uzbrojenie główne miała stanowić gładkolufowa armata kalibru 120 lub 125 mm z możliwością wystrzeliwania przeciwpancernych pocisków rakietowych, sprzężona z karabinem maszynowym kalibru 7,62 mm oraz wielokalibrowy karabin maszynowy kalibru 12,7 mm w zdalnie sterowanym stanowisku na stropie wieży. System kierowania ogniem składał się z panoramicznego stabilizowanego dzienno-nocnego przyrządu obserwacyjnego dowódcy typu SFIM HL-70 lub SAGEM VIGY-40 i dzienno-nocnego stabilizownago celownika działonowego ST72 lub HL-60 – oba z termowizorami – oraz podsystemu czujników i przelicznika balistycznego. System łączności i dowodzenia miał być odporny na zakłócenia, ze zautomatyzowanym kodowaniem i dekodowaniem przesyłanych informacji oraz monitorowaniem stanu pojazdu. Dodatkowym wyposażeniem miał być system nawigacji lokalnej (bezwładnościowej) i satelitarnej oraz układ ochrony załogi przed skutkami broni masowego rażenia, a także system ostrzegania o opromieniowaniu z wyrzutniami granatów dymnych.

Czołg Goryl-Anders 3

Pojazdy wsparcia i pomocnicze na podwoziu czołgu Goryl-Anders.

Planowano też późniejsze powstanie, w oparciu o podwozie opracowane dla Goryla, kolejnych pojazdów opancerzonych wsparcia. Miały to być m.in. przeciwlotniczy zestaw rakietowy, przeciwlotniczy zestaw artyleryjski, wóz dowodzenia z systemem radiolokacyjnym, samobieżny niszczyciel czołgów, most czołgowy, maszyna drogowo-inżynieryjna (czołg saperski) i wóz zabezpieczenia technicznego.

Masa bojowa 46-51 ton
Długość całkowita 9760 mm
Szerokość 3890 mm
Wysokość 2460 mm
Prześwit 450-650 mm
Prędkość maksymalna po drodze utwardzonej 70 km/h
Prędkość maksymalna po drodze gruntowej 45 km/h
Zasięg 550 km

Bazując na doświadczeniach z projektu Goryl-Anders w połowie lat dziewięćdziesiątych przedstawiono koncepcję czołgu nowej generacji z odmiennym układem konstrukcyjnym, tj. z przedziałem silnikowym z przodu i bezzałogową wieżą oraz miejscami dwu- lub trzyosobowej załogi w kadłubie. Projekt nie wyszedł poza stadium koncepcji.

Copyright © Redakcja Militarium/Rys. Ośrodek Badawczo-Rozwojowy Urządzeń Mechanicznych